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Exercise 1. Assume that ϕ, Φ are as in the structural stability theorem in lecture3.pdf. Also
assume with

Φ(x) = 2x+ ψ̂(x), ψ̂(x+ 1) = ψ̂(x),

that ψ̂ ∈ C1(R), and finally that ψ̂(0) = 0, ψ̂′(0) ̸= 0. Then show that there is no open interval
(a, b) ⊂ R on which the function u which solves

Φ(u(x)) = u(2x) (1)

is of class C1. Hint: first show that if u is C1 on some open interval, then it is already C1

everywhere. Then show that there is a dense set of points where the derivative u′ vanishes.

Solution. Notice that u solving the fixed point problem (1) means that for x ∈ (a, b) where u
is differentiable, we have

u′(2x) = u′(x)
(

1 + ψ̂′(u(x))
2

)
. (2)

Since u ∈ C1((a, b)) and ψ̂ ∈ C1(R), we find that u ∈ C1((2a, 2b)), and by iteration,

u ∈ C1

⋃
n≥0

(2na, 2nb)

 .

Finally, notice that there must be N ≥ 0 for which 2N (b − a) > 1, and this means that u
is differentiable in (2Na, 2Nb), which contains an interval of length 1, and by periodicity u is
differentiable everywhere.

To show that u′ vanishes in a dense set, notice that since ψ̂ is Lipschitz with L ∈ [0, 1), the
rightmost factor on the right-hand side of (2) is never equal to zero, and therefore

u′(x) = 0 if and only if u′(2x) = 0. (3)

Moreover, by looking at (2) at x = 0 one can use this same argument to show that u′(0) = 0.
Differentiating u(x+ 1) = u(x) + 1 implicitly yields

u′(x+ 1) = u′(x),

meaning that u′(n) = 0 for all n ∈ Z. Combining this with (3) and iterating k ∈ N times yields

u′
( n

2k

)
= 0.

Hence u′ vanishes on the set S =
{
n/2k : n ∈ Z, k ∈ N ∪ {0}

}
, which is dense in R. Therefore

u′ ≡ 0, which contradicts the fact that u is increasing.

Exercise 2.

1. Let T be a contraction on the complete metric space (X, d) with contraction factor λ ∈
(0, 1), i.e. d(Tx, Ty) ≤ λd(x, y). Then if x∗ denotes the fixed point of T , show that for
any x1 ∈ X there is a constant C > 0 such that

d
(
T k(x1), x∗) ≤ Cλk.
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2. Let Tg(x) = Φ−1(g(2x)) be as in lecture3.pdf, acting on the complete metric space X
as in the lecture. By optimizing the choice of k in (i), show that there is a number
α = α(L) ∈ (0, 1) and a constant C∗ > 0 such that

|u(x) − u(y)| ≤ C∗ |x− y|α

for every x, y ∈ R with |x− y| ≤ 1. Here u solves the fixed point problem (1). thus the
conjugating function h is Hölder continuous.

Solution. For the first part, notice that

d(T kx1, x
∗) = lim

n→∞
d(T kx1, T

nx1) ≤ λk sup
n≥1

d(x1, T
nx1)

≤ λk sup
n≥1

n∑
j=1

d(T j−1x1, T
jx1) ≤ λk

∑
j≥1

λjd(x1, Tx1) = 1
1 − λ

d(x1, Tx1)λk.

It suffices to set C = d(x1, Tx1)/(1 − λ). For the second part, coming back to the proof in the
lectures, we notice that T kg(x) = Φ−k(2kx), which implies∣∣T k(g(x)) − T k(g(y))

∣∣ ≤ 2kr−k
1 · |x− y| .

Using the first part of the exercise, we conclude that

|u(x) − u(y)| ≤ 2d(u, T kg) +
∣∣T k(g(x)) − T k(g(y))

∣∣ ≤ 2Cr−k
1 + 2kr−k

1 · |x− y| .

Now, let α > 0 and choose k to be the smallest natural number such that

2k ≥ C

|x− y|
, 2α = r1,

to find
|u(x) − u(y)| ≤ 4 · 2k−1 |x− y| r−k

1 ≤ 4C
(

|x− y|
C

)α

≤ D |x− y|α .

Finally, since r1 = 2 − L, notice that we may explicitly write

α = log(2 − L)
log 2 .

Exercise 3. Let X a finite measure space and T : X −→ X measure preserving. For measurable
sets A,B ⊂ X, write

A△B := (A \B) ∪ (B \A) .

Show that T is ergodic if and only if

m(A△T−1(A)) = 0

implies that m(A) = 0 or m(A) = m(X). Hint:
⋂

n≥1
⋃

j≥n T
−j(A).

Solution. Notice that the only if direction is direct. In particular, if A ⊂ X is invariant by T ,
then the symmetric difference of A and T−1(A) is zero, and T is automatically ergodic.

For the if direction, let A ⊂ X be such that the condition of the statement is satisfied. We let

A+ =
⋂

n≥1

⋃
j≥n

T−j(A).

Then, it is immediate that A+ is invariant by T , and

m(T−j(A)△T−(j+1)(A)) = m(T−j(A△T−1(A))) = m(A△T−1(A)) = 0,
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which readily implies that for any k, ℓ ∈ N,

m(T−k(A)△T−(k+ℓ)(A)) = m(T−k(A△T−ℓ(A)))

= m(A△T−ℓ(A)) ≤
ℓ−1∑
j=0

m(T−j(A)△T−(j+1)(A)) = 0.

In particular, we achieve

T−k(A) ∪ T−(k+ℓ)(A) = T−k(A) ⊔ Sk, m(Skℓ) = 0.

Collecting all the preimages,

A+ =
⋂

n≥1

⋃
j≥n

T−j(A) =
⋂

n≥1

T−n(A) ⊔
⋃
ℓ≥1

Snℓ

 = N ⊔
⋂

n≥1
T−n(A),

where m(N) = 0. Through the continuity of the measure and thanks to a simple induction
argument we conclude that

m

⋂
j≥1

T−j(A)

 = m(A),

and therefore m(A) = m(A+). Hence either m(A) = m(X) or m(A) = 0, thanks to the
ergodicity of T .

Exercise 4. Let (X,m) be a finite measure space and T : X −→ X a measure preserving map.
Using the Von Neumann Mean Ergodic Theorem, show that if f ∈ L1(X,m), then

lim
N→∞

1
N

N−1∑
j=0

f(T j(x))

exists in L1(X,m), and is a T -invariant function.

Solution. We begin by taking A > 0 and letting

fA(x) = f(x) · 1{|f |≤A}(x) ∈ L2(X,m).

Then, notice that fA ∈ L2(X,m) and fA converges to f in L1(X,m) as A → ∞,

∥f − fA∥L1 =
∥∥f · 1{|f |>A}

∥∥
L1 −→

A→∞
0.

We choose ε > 0 and let A > 0 large enough so that ∥f − fA∥L1 < ε/3, and when we apply the
theorem to fA ∈ L2(X,m) we find that

1
N

N−1∑
j=0

fA ◦ T j −→
N→∞

f∗
A,

in the sense of L2(X,m), where f∗
A in invariant by T . Since this converges, it is in particular a

Cauchy sequence, and we can estimate∥∥∥∥∥∥ 1
N

N−1∑
j=0

fA ◦ T j − 1
M

M−1∑
j=0

fA ◦ T j

∥∥∥∥∥∥
L1

≤

∥∥∥∥∥∥ 1
N

N−1∑
j=0

fA ◦ T j − 1
M

M−1∑
j=0

fA ◦ T j

∥∥∥∥∥∥
L2

√
m(X) < ε/3

for all N,M sufficiently big, using the Cauchy-Schwarz inequality together with the fact that
m(X) < ∞. Now, using the triangle inequality we find∥∥∥∥∥∥ 1

N

N−1∑
j=0

f ◦ T j − 1
M

M−1∑
j=0

f ◦ T j

∥∥∥∥∥∥
L1

< ε,
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if N,M are sufficiently large. Therefore 1
N

∑N−1
j=0 f ◦ T j is a Cauchy sequence in L1(X,m).

Since this is a Banach space, there is f∗ ∈ L1(X,m) such that 1
N

∑N−1
j=0 f ◦ T j → f∗. It

remains to check that f∗ is invariant under T . To this end, notice that

∥f∗ ◦ T − f∗∥L1 = lim
N→∞

∥∥∥∥f ◦ TN − f

N

∥∥∥∥
L1

≤ lim
N→∞

∥∥f ◦ TN
∥∥

L1 + ∥f∥L1

N
= lim

N→∞

2 ∥f∥L1

N
= 0.
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