Introduction to Dynamical Systems

Solutions Problem Set 4

Exercise 1. Assume that ϕ , Φ are as in the structural stability theorem in lecture 3.pdf. Also assume with

$$\Phi(x) = 2x + \hat{\psi}(x), \quad \hat{\psi}(x+1) = \hat{\psi}(x),$$

that $\hat{\psi} \in C^1(\mathbb{R})$, and finally that $\hat{\psi}(0) = 0$, $\hat{\psi}'(0) \neq 0$. Then show that there is no open interval $(a,b) \subset \mathbb{R}$ on which the function u which solves

$$\Phi(u(x)) = u(2x) \tag{1}$$

is of class C^1 . Hint: first show that if u is C^1 on some open interval, then it is already C^1 everywhere. Then show that there is a dense set of points where the derivative u' vanishes.

Solution. Notice that u solving the fixed point problem (1) means that for $x \in (a, b)$ where u is differentiable, we have

$$u'(2x) = u'(x) \left(1 + \frac{\hat{\psi}'(u(x))}{2} \right). \tag{2}$$

Since $u \in C^1((a,b))$ and $\hat{\psi} \in C^1(\mathbb{R})$, we find that $u \in C^1((2a,2b))$, and by iteration,

$$u \in C^1 \left(\bigcup_{n \ge 0} (2^n a, 2^n b) \right).$$

Finally, notice that there must be $N \ge 0$ for which $2^N(b-a) > 1$, and this means that u is differentiable in $(2^Na, 2^Nb)$, which contains an interval of length 1, and by periodicity u is differentiable everywhere.

To show that u' vanishes in a dense set, notice that since $\hat{\psi}$ is Lipschitz with $L \in [0,1)$, the rightmost factor on the right-hand side of (2) is never equal to zero, and therefore

$$u'(x) = 0 \text{ if and only if } u'(2x) = 0.$$
(3)

Moreover, by looking at (2) at x = 0 one can use this same argument to show that u'(0) = 0. Differentiating u(x + 1) = u(x) + 1 implicitly yields

$$u'(x+1) = u'(x),$$

meaning that u'(n) = 0 for all $n \in \mathbb{Z}$. Combining this with (3) and iterating $k \in \mathbb{N}$ times yields

$$u'\left(\frac{n}{2^k}\right) = 0.$$

Hence u' vanishes on the set $S = \{n/2^k : n \in \mathbb{Z}, k \in \mathbb{N} \cup \{0\}\}$, which is dense in \mathbb{R} . Therefore $u' \equiv 0$, which contradicts the fact that u is increasing.

Exercise 2.

1. Let T be a contraction on the complete metric space (X,d) with contraction factor $\lambda \in (0,1)$, i.e. $d(Tx,Ty) \leq \lambda d(x,y)$. Then if x^* denotes the fixed point of T, show that for any $x_1 \in X$ there is a constant C > 0 such that

$$d\left(T^k(x_1), x^*\right) \le C\lambda^k.$$

2. Let $Tg(x) = \Phi^{-1}(g(2x))$ be as in lecture3.pdf, acting on the complete metric space X as in the lecture. By optimizing the choice of k in (i), show that there is a number $\alpha = \alpha(L) \in (0,1)$ and a constant $C_* > 0$ such that

$$|u(x) - u(y)| \le C_* |x - y|^{\alpha}$$

for every $x, y \in \mathbb{R}$ with $|x - y| \le 1$. Here u solves the fixed point problem (1). thus the conjugating function h is Hölder continuous.

Solution. For the first part, notice that

$$\begin{split} d(T^k x_1, x^*) &= \lim_{n \to \infty} d(T^k x_1, T^n x_1) \leq \lambda^k \sup_{n \geq 1} d(x_1, T^n x_1) \\ &\leq \lambda^k \sup_{n \geq 1} \sum_{j=1}^n d(T^{j-1} x_1, T^j x_1) \leq \lambda^k \sum_{j \geq 1} \lambda^j d(x_1, T x_1) = \frac{1}{1 - \lambda} d(x_1, T x_1) \lambda^k. \end{split}$$

It suffices to set $C = d(x_1, Tx_1)/(1 - \lambda)$. For the second part, coming back to the proof in the lectures, we notice that $T^k g(x) = \Phi^{-k}(2^k x)$, which implies

$$|T^k(g(x)) - T^k(g(y))| \le 2^k r_1^{-k} \cdot |x - y|.$$

Using the first part of the exercise, we conclude that

$$|u(x) - u(y)| \le 2d(u, T^k g) + |T^k(g(x)) - T^k(g(y))| \le 2Cr_1^{-k} + 2^k r_1^{-k} \cdot |x - y|.$$

Now, let $\alpha > 0$ and choose k to be the smallest natural number such that

$$2^k \ge \frac{C}{|x-y|}, \quad 2^\alpha = r_1,$$

to find

$$|u(x) - u(y)| \le 4 \cdot 2^{k-1} |x - y| r_1^{-k} \le 4C \left(\frac{|x - y|}{C}\right)^{\alpha} \le D |x - y|^{\alpha}.$$

Finally, since $r_1 = 2 - L$, notice that we may explicitly write

$$\alpha = \frac{\log(2 - L)}{\log 2}.$$

Exercise 3. Let X a finite measure space and $T: X \longrightarrow X$ measure preserving. For measurable sets $A, B \subset X$, write

$$A \triangle B := (A \setminus B) \cup (B \setminus A)$$
.

Show that T is ergodic if and only if

$$m(A\triangle T^{-1}(A)) = 0$$

implies that m(A) = 0 or m(A) = m(X). Hint: $\bigcap_{n \ge 1} \bigcup_{j \ge n} T^{-j}(A)$.

Solution. Notice that the *only if* direction is direct. In particular, if $A \subset X$ is invariant by T, then the symmetric difference of A and $T^{-1}(A)$ is zero, and T is automatically ergodic.

For the if direction, let $A \subset X$ be such that the condition of the statement is satisfied. We let

$$A^{+} = \bigcap_{n \ge 1} \bigcup_{j \ge n} T^{-j}(A).$$

Then, it is immediate that A^+ is invariant by T, and

$$m(T^{-j}(A)\Delta T^{-(j+1)(A)}) = m(T^{-j}(A\Delta T^{-1}(A))) = m(A\Delta T^{-1}(A)) = 0,$$

which readily implies that for any $k, \ell \in \mathbb{N}$,

$$m(T^{-k}(A)\triangle T^{-(k+\ell)}(A)) = m(T^{-k}(A\triangle T^{-\ell}(A)))$$
$$= m(A\triangle T^{-\ell}(A)) \le \sum_{j=0}^{\ell-1} m(T^{-j}(A)\triangle T^{-(j+1)}(A)) = 0.$$

In particular, we achieve

$$T^{-k}(A) \cup T^{-(k+\ell)}(A) = T^{-k}(A) \sqcup S_k, \quad m(S_{k\ell}) = 0.$$

Collecting all the preimages,

$$A^{+} = \bigcap_{n \ge 1} \bigcup_{j \ge n} T^{-j}(A) = \bigcap_{n \ge 1} \left[T^{-n}(A) \sqcup \bigcup_{\ell \ge 1} S_{n\ell} \right] = N \sqcup \bigcap_{n \ge 1} T^{-n}(A),$$

where m(N) = 0. Through the continuity of the measure and thanks to a simple induction argument we conclude that

$$m\left(\bigcap_{j\geq 1} T^{-j}(A)\right) = m(A),$$

and therefore $m(A) = m(A^+)$. Hence either m(A) = m(X) or m(A) = 0, thanks to the ergodicity of T.

Exercise 4. Let (X, m) be a finite measure space and $T: X \longrightarrow X$ a measure preserving map. Using the Von Neumann Mean Ergodic Theorem, show that if $f \in L^1(X, m)$, then

$$\lim_{N \to \infty} \frac{1}{N} \sum_{j=0}^{N-1} f(T^j(x))$$

exists in $L^1(X,m)$, and is a T-invariant function.

Solution. We begin by taking A > 0 and letting

$$f_A(x) = f(x) \cdot \mathbb{1}_{\{|f| \le A\}}(x) \in L^2(X, m).$$

Then, notice that $f_A \in L^2(X, m)$ and f_A converges to f in $L^1(X, m)$ as $A \to \infty$,

$$||f - f_A||_{L^1} = ||f \cdot \mathbb{1}_{\{|f| > A\}}||_{L^1} \xrightarrow[A \to \infty]{} 0.$$

We choose $\varepsilon > 0$ and let A > 0 large enough so that $||f - f_A||_{L^1} < \varepsilon/3$, and when we apply the theorem to $f_A \in L^2(X, m)$ we find that

$$\frac{1}{N}\sum_{i=0}^{N-1} f_A \circ T^j \underset{N \to \infty}{\longrightarrow} f_A^*,$$

in the sense of $L^2(X, m)$, where f_A^* in invariant by T. Since this converges, it is in particular a Cauchy sequence, and we can estimate

$$\left\| \frac{1}{N} \sum_{j=0}^{N-1} f_A \circ T^j - \frac{1}{M} \sum_{j=0}^{M-1} f_A \circ T^j \right\|_{L^1} \le \left\| \frac{1}{N} \sum_{j=0}^{N-1} f_A \circ T^j - \frac{1}{M} \sum_{j=0}^{M-1} f_A \circ T^j \right\|_{L^2} \sqrt{m(X)} < \varepsilon/3$$

for all N, M sufficiently big, using the Cauchy-Schwarz inequality together with the fact that $m(X) < \infty$. Now, using the triangle inequality we find

$$\left\|\frac{1}{N}\sum_{j=0}^{N-1}f\circ T^j-\frac{1}{M}\sum_{j=0}^{M-1}f\circ T^j\right\|_{L^1}<\varepsilon,$$

if N,M are sufficiently large. Therefore $\frac{1}{N}\sum_{j=0}^{N-1}f\circ T^j$ is a Cauchy sequence in $L^1(X,m)$. Since this is a Banach space, there is $f^*\in L^1(X,m)$ such that $\frac{1}{N}\sum_{j=0}^{N-1}f\circ T^j\to f^*$. It remains to check that f^* is invariant under T. To this end, notice that

$$\begin{split} \|f^* \circ T - f^*\|_{L^1} &= \lim_{N \to \infty} \left\| \frac{f \circ T^N - f}{N} \right\|_{L^1} \\ &\leq \lim_{N \to \infty} \frac{\|f \circ T^N\|_{L^1} + \|f\|_{L^1}}{N} = \lim_{N \to \infty} \frac{2 \|f\|_{L^1}}{N} = 0. \end{split}$$